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Abstract—Brain tumor is one of the primary diseases that
endanger human life and health. Multi-modality magnetic res-
onance imaging (MRI) for tumor analysis is one of the key
techniques to clinical diagnosis. Experienced experts artificially
segment the classical method of brain tumor segmentation
according to their anatomical and pathological knowledge, which
is time-consuming. In this paper, we propose a deep neural
network structure, namely Feature Mining Networks (FMNet),
for brain tumor segmentation. The proposed FMNet adopts three
innovative structure, including semantic information mining unit
(SIMU), macro information mining unit (MIMU), and a feature
correction unit (FCU). These three units can enhance the mining
of semantic information and spatial information, and further,
modify the information in a direction that is conducive to
segmentation results. Each unit can bring an improvement in
segmentation performance. We evaluate the proposed framework
on BraTS2017 and BraTS2018 dataset. The experimental results
show that our FMNet performs better than state-of-the-art
networks such as fully convolutional networks (FCN), U-Net and
so on.

Index Terms—Brain Tumor, Segmentation, Feature Mining
Networks, Deep Neural Networks, Deep Learning

I. INTRODUCTION

Brain tumor is one of the primary diseases that endanger
human life and health [1]. Multi-modality magnetic resonance
imaging (MRI) for tumor analysis is one of the keys to
treatment [2]. Segmentation of brain tumors is very popular in
the field of diagnosis. Owing to the high complexity of brain
tumor MRI, brain tumor segmentation is still a challenging
task and need to be further explored. The classical method
is artificially segmented by experienced experts according to
their anatomical and pathological knowledge, with the help
of specific software. However, this method is time-consuming
and labor-intensive, and the correction rate of labeling varies
from person to case. Over the past few decades, there has
been increasing interest in developing computational methods
to assist in the analysis of MRI in pathology.

Since the AlexNet won the imagenet large scale visual
recognition challenge (ILSVRC) in 2012 [3], deep learning
stands out in machine learning algorithms, especially in tasks
classification, object detection [4], and semantic segmentation
[5] [6]. ResNet introduced residual unit to reduce gradient
dispersion and performd better on these tasks [7]. Recently,

The work was supported by the foundation of the key techniques of brain-
like computing and application in multimodal information processing under
grands No. 2017CXGC1504.

Fig. 1: Structure of FMNets. Consists of four parts: SIMU,
MIMU, FCU, and FPU.

image processing based on deep neural networks has became
a hot topic for research in academia and industry. The initial
segmentation methods based on convolutional neural networks
train a classification network by taking patches as input [8].
The category of the patch is treated as the category of the cen-
tral pixel on the patch. Such a classification network is trained
to achieve pixel-level classification, namely segmentation.

In this way, it is difficult to select the size of small
color blocks, and there is the problem of repeated calculation
of adjacent pixel points. Therefore, the fully convolutional
networks (FCN) replaces the full connection layer in the
traditional classification network structure. It uses the fully
convolutional layer to predict the category of pixel points from
the extracted feature graph to complete segmentation tasks.
Fully convolutional networks can take arbitrary scale images as
input, to solve the problem of repeated calculation of adjacent
pixels. Compared with natural images, medical images have
fewer data samples and higher complexity, i.e., large gray
value range and complex boundary. U-Net performs well in
solving the problem of medical image segmentation [9]. Its
main structure is to combine images of the same scale in
the process of up-sampling and down-sampling, to realize the
fusion of low-level features and high-level features. There are
many variants of U-Net, such as combinations with modules
like ResNet, DenseNet [10] [11] [12].

Methods such as PANet [13] and FPN [14] combine a



large amount of information. The merged information does
not necessarily contribute to more accurate segmentation. So
we need to correct the feature in a direction that is favorable
for segmentation results. The traditional U-Net model only
uses a convolution kernel of size 3, which is insufficient for
spatial information extraction. Therefore, we need to extract
more spatial location information for segmentation. Methods
such as V-Net [15]use the structure of ResNet to extract more
abundant semantic information, but this is not enough. There
are still many details waiting to be mined.

In this paper, we propos a deep neural network structure,
namely Feature Mining Networks (FMNet), for brain tumor
segmentation. We innovate three network structural units for
semantic segmentation. Each unit brings a significant improve-
ment in segmentation performance. The structure of FMNet is
shown in Figure 1. The main contributions of this paper is
listed below:

1) We innovate the Semantic Information Mining Unit
(SIMU). Based on feature extraction of the encoder, a
branch is added to each block to search for new deep
semantic information. This allows for more abundant
semantic information.

2) We innovate the Macro Information Mining Unit
(MIMU). We use multi-scale convolution kernels to scan
features of small size, including convolution kernels
with large scale. This can be an excellent way to mine
spatial location information. After the fusion of this
information, we conduct the attention operations for the
integrated features.

3) We innovate the Feature Correction Unit (FCU). Since
the fused information is not necessarily beneficial to
the segmentation results, this unit corrects the fused
features in a direction conducive to segmentation. The
corrections are made using features from the decoder.

II. RELATED WORKS

A. Feature Pyramid Unit (FPU)
Image segmentation method based on convolutional neural

network loses the original position information after multi-
ple convolution and downsampling of the data. Upsampling
directly can restore resolution but affects segmentation accu-
racy. The feature pyramid structure solves this problem well,
which can effectively use position information and multi-scale
information to improve performance of image segmentation.
The structure of FPU is shown in Figure 2.

The output of each upsampling region in the decoder is
upsampled to the scale of the original image respectively, with
the same number of channels. Then add them up to get the
fused features. The feature passes through a convolution layer
and is segmented after passing the softmax activation function.
The fusion process is shown below:

Output =

n∑
i=1

H (xi) . (1)

where Output indicates the output of the FPU. H (xi) rep-
resents the ith feature from upsample layer. Of course, if

Fig. 2: Feature Pyramid Unit.

the feature is already original scale, it does not need to be
upsampled but added directly.

III. METHODS

The proposed FMNet adopts three innovative structure,
including FCU, SIMU, and MIMU, respectively. These three
units can enhance the mining of semantic information and
spatial information, and can further modify the information
in a direction that is conducive to segmentation results. In
addition, resnet structure and feature pyramid structure are also
used in this segmentation network.

A. Semantic Information Mining Unit (SIMU)

Traditional deep learning algorithms usually include en-
coder and decoder, where the encoder is used to extract
detailed information. The decoder fuses these details and
downsamples them to get the final segmentation result. At
present, most of the segmentation methods use only one
path in the encoder part. The segmentation method based on
ResNet adds a residual path to each downsampling area of
the encoder to supplement information. However, the supple-
mentary information comes from the convolution layer before,
which lead to the insufficiency of extracted details. Therefore,
semantic information compensation should be carried out in
the segmentation process. The structure of SIMU is shown in
Figure 3.

The encoder section is composed of multiple downsampling
blocks which include a SIMU and a pooling layer. Each SIMU
contains two branches. The first is the main feature extraction
branch, which is a residual unit. It consists of feature extraction
sub-branch and residual sub-branch. The feature extraction
sub-branch includes two convolutional layers with the kernel
size of 3. The residual sub-branch is a convolutional layer
with the kernel size of 1. After each convolutional layer,
there is a batch normalization layer and an activation layer.
The output of main feature extraction branch is obtained by
adding the features of two sub-branches. The second is the
supplementary feature extraction branch. It is composed of
two residual units. The structure of each residual unit is the
same as that of the main information extraction branch, but the
number of channels is half of it. Then the features of these two



Fig. 3: Structure of SIMU. The first SIMU was taken as
example.

branches are concatenated to get the output of SIMU. After the
SIMU, a pooling layer is used to change the image scale. The
output features of the pooling layer are the input features of
the next downsampling block. Finally, the ultimate output of
the encoder is obtained through a downsampling block without
pooling layer. The process is shown below:

E (xi) = M (xi)⊕ S (xi) . (2)

where E (xi) is the output of the ith SIMU in encoder. M (xi)
is the output of main feature extraction branch in the ith SIMU.
S (xi)is the output of supplementary feature extraction branch
in the ith SIMU. ⊕ means concatenate operation.

B. Macro Information Mining Unit (MIMU)

The traditional deep neural network based segmentation
algorithm directly connects the encoder to the decoder. In the
encoding process, the scale of features gradually decreases
while channels increase. In general, the decoder directly
upsamples these small scale features. We have found through
experiments that the features obtained by the last layer of
encoders are essential for the segmentation results. Due to
the small-scale nature, we can use a large convolution kernel
to scan it and extract more spatial localization information for
segmentation. The structure of MIMU is depicted in Figure 4.

The MIMU consists of three branches. The first branch is
an ordinary convolution layer, which carries out convolution
operation on features from the last layer of the encoder. The
second is the macro information mining branch, which uses
three convolution kernels with different scales to carry out
convolution operations on features, respectively. The scale of
these three convolution kernels is 3, 5 and 7. Then add the
three features, and finally multiplying added features by output
features of the first branch to obtain the output of the second
branch. The third is global attention branch. Meanwhile, global
average pooling is conducted for the output of the first branch.
Then it is multiplied by the output of the second branch.

Fig. 4: Structure of MIMU.

Finally, we get the output of the MIMU. The process is shown
below:

M (x) = E (xn) ·Multi (E (xn)) ·GAP (E (xn)) , (3)

Multi (x) = Conv3 (x) + Conv5 (x) + Conv7 (x) . (4)

where M (x) is the output of the MIMU. E (xn) is the output
of the last downsampling area of encoder. Multi (E (xn)) is
the output of macro information mining branch which consists
of three convolution layers of different scales. GAP (E (xn))
is the output of global attention branch.

C. Feature Correction Unit

The current segmentation methods have focused on feature
fusion. These methods fuse all the information from different
levels of space and detail. More information is extracted
in SIMU and MIMU, and both favorable and unfavorable
information for segmentation results are fused. Therefore, it
is necessary to correct the features in a direction that favors
the segmentation result during the segmentation process. The
structure of FCU is shown in Figure 5.

The decoder part is composed of multiple upsampling
areas. The number can be set freely and eventually needs
to be upsampled to the original scale. The upsampling area
includes an upsample layer, a feature correction part, and
a residual part. After each convolution layer, local response
normalization is adopted to prevent gradient dispersion. The
feature correction section consists of two multiplicative layers
and one concatenate layer. The first feature multiplication layer
multiplies the encoder output by the upsampled output from
the decoder, both of which are of the same scale. The sec-
ond feature multiplication layer performs a self-multiplication
operation on upsampled output. Finally, the concatenate layer
connects these two features to obtain the output of feature
correction part. The correction process is shown below:

D (xi) = (E (xi) ·D (xi−1))⊕ (D (xi−1) ·D (xi−1)) . (5)

Where D (xi) and E (xi) are the same level output of decoder
and encoder, respectively. D (xi−1) is the output of previous
level in decoder.



Fig. 5: Structure of FCU. The first FCU was taken as
example.

IV. EXPERIMENTS

We have calculated dice of our proposed FMNet method on
BraTS2017 and BraT2018 datasets.

A. Dataset

BraTS2018 [16] dataset and BraTS2017 [17] dataset are
employed respectively for training and testing. These are
standard datasets from MICSAI-BraTS competition, which
contain multimodal MRI scans of glioblastoma (GBM/HGG)
and lower grade glioma (LGG). Among them, HGG comprises
210 cases, and LGG comprises 75 cases. HGG and LGG
are mixed randomly during training. These multimode scans
describe native (T1), post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery
(FLAIR) volumes. They are obtained by various scanners
from multiple agencies. All imaging datasets are manually
segmented by one to four raters according to the same anno-
tation protocol. Experienced neuroradiologists recognize their
annotations. Annotations comprise the GD-enhancing tumor
(ET-label 4), the peritumoral edema (ED-label 2), and the
necrotic and non-enhancing tumor core (NCR/NET-label 1),
as described in [18].

B. Evaluation standard

Dice Similarity Coefficient (DSC) was evaluated in the
following three segmentation tasks in our experiment: Whole
Tumor (WT), Tumor Core (TC), Enhancing Tumor (ET). The
segmented result can be divided into four parts, namely True
Positive (TP), False Positive (FP), True Negative (TN) and
False Negative (FN).

DSC =
2TP

FP + 2TP + FN
. (6)

C. Preprocessing

Due to the small number and high complexity of medical
images, it is challenging to extract useful features for analysis.
Therefore, we need to preprocess these images using multi-
modal features of MRI. First, images with four modalities were
normalized to adjust the gray value distribution. Then these
four modalities images were fused into four channels datasets.
At the same time, we removed slices from the dataset without
any label. After shuffling the order, they were divided into five
parts, including four parts for training and one part for testing.

D. Baseline

In a comparative experiment, VGG [19] is a brain tumor
segmentation method using VGGNet structure. DUnet [20]
is a brain tumor method to deepen U-Net, which is more
effectual than the traditional U-Net structure. FCNN [21]
is a fully convolutional networks method on brain tumor
segmentation. HPUNet [22] adds feature pyramid structure
to the conventional U-Net, which improves the segmentation
accuracy. For each convolution block in HPU-Net, we added
residuals unit, namely baseline. The experiments used a GTX-
1080ti graphics card with 11G of graphics memory.

E. Results

TABLE I: Comparison with state-of-the-arts on the testing
set of BRATS2017. Boldface is our method.

BraTS2017
Dice

WT TC ET

VGG 0.9058 0.6909 0.6479

DUnet 0.8959 0.7035 0.6275

FCNN 0.9097 0.6511 0.5705

HPUNet 0.9244 0.8001 0.7636

baseline(HPUNet+ResNet) 0.9257 0.8068 0.7683

baseline+FCU 0.9257 0.8223 0.7904

baseline+FCU+MIMU 0.9272 0.8273 0.7964

baseline+FCU+MIMU+SIMU 0.9272 0.8390 0.8003

Table 1 shows the segmentation results of our methods on
BraTS2017 dataset. As can be seen from the table, each inno-
vation point contributes to the improvement of dice. FMNet is
a two-dimensional model that surpassed BraTS2017 champion
in each of the three split tasks. Also, FMNet performed even
better than the 3D model in BraTS2017 competition.

Table 2 shows the segmentation effect of our method on
BraTS2018 dataset. Our method FMNet is still superior to
FCNN, DUnet, and other traditional methods. It is well known
that in general, the effect of two-dimensional model is not as
good as that of the three-dimensional model. In BraTS2018
competition, the first three winners are 3D models, but our 2D
model can still surpass the third place in WT and the second
place in ET.
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Fig. 6: Dice on BraTS2017.
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Fig. 7: Dice on BraTS2018.

TABLE II: Comparison with state-of-the-arts on the testing
set of BRATS2018. Boldface is our method.

BraTS2018
Dice

WT TC ET

VGG 0.8724 0.6933 0.6598

DUnet 0.8631 0.6884 0.6205

FCNN 0.8687 0.6537 0.5828

HPUNet 0.8930 0.8108 0.7558

baseline(HPUNet+ResNet) 0.8925 0.7811 0.7463

baseline+FCU 0.8954 0.8091 0.7783

baseline+FCU+MIMU 0.8956 0.8313 0.8067

baseline+FCU+MIMU+SIMU 0.9019 0.8374 0.8176

As can be seen in Figure 6 and Figure 7, each method
we proposed can improve the segmentation effect. The results
of both BraTS2017 and BraTS2018 tend to stabilize after
the 30th Epoch. Figure 8 and Figure 9 are visualizations of
FMNet segmentation performance. The segmentation results
of FMNet is very close to ground truth. It is hard to see the
difference between them and ground truth with eyes.

Fig. 8: Visual segmentation results of BraTS2017 sample.

V. CONCLUSION

In this paper, we proposed a deep neural network structure,
namely Feature Mining Networks, for brain tumor segmenta-
tion. The innovation lies in the following three aspects: The
first is Feature Correction Unit, which modifies the informa-
tion in a direction that is conducive to segmentation results.
Secondly, we proposed a Macro Information Mining Unit,
which scans small-scale features with multi-scale convolution



Fig. 9: Visual segmentation results of BraTS2018 sample.

kernels to obtain more spatial location information. The third
is the Semantic Information Mining Unit, which uses three
branches to dig more in-depth details. Experiments proved
that our three innovations could bring the improvement of
segmentation accuracy. In the future, we plan to focus on
weakly supervised learning and the clinical use of appropriate
methods.

REFERENCES

[1] Stefan Bauer, Roland Wiest, Lutz-P Nolte, and Mauricio Reyes. A
survey of mri-based medical image analysis for brain tumor studies.
Physics in Medicine & Biology, 58(13):R97, 2013.

[2] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-
Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz,
Johannes Slotboom, Roland Wiest, et al. The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical
imaging, 34(10):1993, 2015.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580–587, 2014.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L Yuille. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence,
40(4):834–848, 2018.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3431–
3440, 2015.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[8] Mohammadreza Mostajabi, Payman Yadollahpour, and Gregory
Shakhnarovich. Feedforward semantic segmentation with zoom-out
features. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3376–3385, 2015.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241. Springer, 2015.

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In CVPR,
volume 1, page 3, 2017.

[11] Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and
Yoshua Bengio. The one hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages
1175–1183. IEEE, 2017.

[12] Mazhar Shaikh, Ganesh Anand, Gagan Acharya, Abhijit Amrutkar,
Varghese Alex, and Ganapathy Krishnamurthi. Brain tumor segmen-
tation using dense fully convolutional neural network. In International
MICCAI Brainlesion Workshop, pages 309–319. Springer, 2017.

[13] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path
aggregation network for instance segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
8759–8768, 2018.

[14] Tsung-Yi Lin, Piotr Dollár, Ross B Girshick, Kaiming He, Bharath
Hariharan, and Serge J Belongie. Feature pyramid networks for object
detection. In CVPR, volume 1, page 4, 2017.

[15] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmenta-
tion. In 3D Vision (3DV), 2016 Fourth International Conference on,
pages 565–571. IEEE, 2016.

[16] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello,
Martin Rozycki, Justin S Kirby, John B Freymann, Keyvan Farahani,
and Christos Davatzikos. Advancing the cancer genome atlas glioma
mri collections with expert segmentation labels and radiomic features.
Scientific data, 4:170117, 2017.

[17] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello,
Martin Rozycki, Justin S Kirby, John B Freymann, Keyvan Farahani,
and Christos Davatzikos. Advancing the cancer genome atlas glioma
mri collections with expert segmentation labels and radiomic features.
Scientific data, 4:170117, 2017.

[18] Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-
Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz,
Johannes Slotboom, Roland Wiest, et al. The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical
imaging, 34(10):1993–2024, 2015.

[19] Haocheng Shen, Jianguo Zhang, and Weishi Zheng. Efficient symmetry-
driven fully convolutional network for multimodal brain tumor segmen-
tation. In Image Processing (ICIP), 2017 IEEE International Conference
on, pages 3864–3868. IEEE, 2017.

[20] Geena Kim. Brain tumor segmentation using deep u-net. In International
MICCAI BraTS Challenge, pages 154–160, 2017.

[21] Varghese Alex, Mohammed Safwan, and Ganapathy Krishnamurthi.
Brain tumor segmentation from multi modal mr images using fully con-
volutional neural network. In International MICCAI BraTS Challenge,
pages 1–8, 2017.

[22] Xiangmao Kong, Guoxia Sun, Qiang Wu, Ju Liu, and Fengming
Lin. Hybrid pyramid u-net model for brain tumor segmentation. In
International Conference on Intelligent Information Processing, pages
346–355. Springer, 2018.

View publication stats

https://www.researchgate.net/publication/339263697

