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Background and Objectives: Automatic segmentation of the cerebral vasculature and aneurysms facilitates 

incidental detection of aneurysms. The assessment of aneurysm rupture risk assists with pre-operative 

treatment planning and enables in-silico investigation of cerebral hemodynamics within and in the vicin- 

ity of aneurysms. However, ensuring precise and robust segmentation of cerebral vessels and aneurysms 

in neuroimaging modalities such as three-dimensional rotational angiography (3DRA) is challenging. The 

vasculature constitutes a small proportion of the image volume, resulting in a large class imbalance (rel- 

ative to surrounding brain tissue). Additionally, aneurysms and vessels have similar image/appearance 

characteristics, making it challenging to distinguish the aneurysm sac from the vessel lumen. 

Methods: We propose a novel multi-class convolutional neural network to tackle these challenges and 

facilitate the automatic segmentation of cerebral vessels and aneurysms in 3DRA images. The proposed 

model is trained and evaluated on an internal multi-center dataset and an external publicly available 

challenge dataset. 

Results: On the internal clinical dataset, our method consistently outperformed several state-of-the-art 

approaches for vessel and aneurysm segmentation, achieving an average Dice score of 0.81 (0.15 higher 

than nnUNet) and an average surface-to-surface error of 0.20 mm (less than the in-plane resolution 

(0.35 mm/pixel)) for aneurysm segmentation; and an average Dice score of 0.91 and average surface-to- 

surface error of 0.25 mm for vessel segmentation. In 223 cases of a clinical dataset, our method accurately 

segmented 190 aneurysm cases. 

Conclusions: The proposed approach can help address class imbalance problems and inter-class inter- 

ference problems in multi-class segmentation. Besides, this method performs consistently on clinical 

datasets from four different sources and the generated results are qualified for hemodynamic simulation. 

Code available at https://github.com/cistib/vessel-aneurysm-segmentation . 

© 2023 Published by Elsevier B.V. 
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. Introduction 

Cerebral aneurysms are pathological protrusions of cerebral ar- 

erial walls (see Fig. 1 , for example), and their rupture is the 

eading cause of subarachnoid hemorrhage in patients. Three- 

imensional X-ray rotational angiography (3DRA) [4 , 35 , 36] imag- 

ng is commonly used to visualize and characterize cerebral vessels 

nd aneurysms through the reconstruction of tomographic slices of 

 region of interest like computed tomography angiography (CTA), 
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sing single-plane radiographic equipment [2,3] . In contrast with 

D magnetic resonance angiography (MRA) imaging and CTA, 3DRA 

rovides images of higher spatial resolution and improved soft- 

issue contrast [32–34] , capturing fine vascular structures and en- 

bling precise characterization of aneurysm morphology. 

An accurate, automated, and reproducible cerebral vessel 

nd aneurysm segmentation technique would facilitate vari- 

us computational imaging and clinical applications. Segmenta- 

ion of cerebrovasculature has found its use in pre-operative 

lanning of invasive procedures [37,39] , delivering image-guided 

herapies/treatments [40] , and assessing cerebral hemodynam- 

cs through computational fluid dynamics (CFD) simulations [41] . 

imilarly, detection and segmentation of cerebral aneurysms are 

https://doi.org/10.1016/j.cmpb.2023.107355
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107355&domain=pdf
https://github.com/cistib/vessel-aneurysm-segmentation
mailto:y.xia@leeds.ac.uk
https://doi.org/10.1016/j.cmpb.2023.107355
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Fig. 1. From left to right: 2D slice from a reconstructed 3DRA image; the maximum intensity projection (MIP) of the 3DRA image; and a 3D simulation-ready mesh of a 

cerebral aneurysm (blue) and the major vessels (white) in its vicinity reconstructed from its corresponding main vessel segmentation. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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aluable as they facilitate incidental identification and quantitative 

haracterization of aneurysm morphology [42,48] . The latter is es- 

ecially useful as previous studies have shown that the size and 

hape of a cerebral aneurysm are essential biomarkers for evalu- 

ting rupture risk [38] . Precise characterization of aneurysm loca- 

ion and morphology is necessary for selecting a suitable/approved 

reatment strategy, pre-operative intervention planning, and post- 

perative assessment and monitoring. While cerebral aneurysms 

nd their surrounding vessels can be detected and segmented 

anually, this process is time-consuming due to the high dimen- 

ionality of 3D image volumes and is subject to inter- and intra- 

bserver variability. If the computer-assisted model can automati- 

ally detect the location of the aneurysm and characterize its mor- 

hological properties such as neck diameter, aneurysm size, etc., 

ll of these characteristics can support the clinical decision-making 

rocess. For instance, depending on the size and location of the 

neurysm, the clinician would either use coils or flow diverters to 

reat the aneurysm. Similarly, to decide the type of medical device 

or treating the aneurysm, the clinician relies on the information 

n whether there is a bifurcation around the aneurysm. On the one 

and, the direct clinical needs involve automatically characterizing 

he location and morphological properties of the aneurysm which 

ould inform the best course of treatment for the aneurysm. On 

he other hand, to motivate clinical needs, in-silico trials [43] can 

elp identify the best operational regimes for the use of certain de- 

ices and better inform the safety and efficacy of medical devices 

n clinical trials. In order to be able to scale up in-silico trials to 

arge-scale, both qualified vessel and aneurysm segmentation are 

equired to derive accurate geometrical and computational models. 

Several previous studies have proposed automatic and semi- 

utomatic techniques for cerebral vessel and aneurysm segmen- 

ation in 3D imaging modalities such as MRA, CTA, and 3DRA. 

hile early work in the field relied on classical techniques such 

s geodesic active regions for segmenting vessels and aneurysms 

44–46] , recent approaches have focused on data-driven supervised 

earning-based methods due to the tremendous success of convo- 

utional neural networks (CNNs) at detecting and segmenting ob- 

ects/regions in images. As in several other domains, the segmenta- 

ion performance afforded by deep learning-based approaches for 

erebral vessels and aneurysms far exceeds that of classical ap- 

roaches. For example, in a recent study [17] , the authors pro- 

osed DeepVesselNet, a CNN designed to segment cerebral ves- 

els in MRA images. Here, 2D orthogonal cross-hair filters (con- 

olutions) were used to preserve details of fine vascular struc- 

ures in the learned features while incorporating 3D contextual 

nformation. As vessels constitute a small fraction of the overall 

mage volume, the segmentation task suffers from a significant 

lass imbalance between the foreground (vessel) and background 
2

surrounding brain tissue) classes. This was addressed by train- 

ng DeepVesselNet with a class-balanced cross-entropy loss func- 

ion that minimizes the false-positive rate. Similarly, to incorporate 

D contextual information and improve the accuracy of segment- 

ng fine vessels [12] in digital subtraction angiography, Patel et al., 

13] used DeepMedic, a powerful segmentation approach proposed 

n a previous study [10] . To improve the performance of deep 

earning on small object segmentation and obtain annotated train- 

ng data at a rapid pace, Vessel-CAPTCHA [50] proposes a novel 

nnotation-efficient deep learning vessel segmentation framework. 

he framework only requires weak patch-level labels to discrimi- 

ate between the vessel and non-vessel 2D patches in the training 

et. This framework can effectively segment vessels including both 

ain and fine branches. Unlike the original U-Net architecture [14] , 

eepMedic is a 3D CNN with two parallel encoder pathways that 

earn features at different image resolutions to capture contextual 

nformation while keeping the computational cost low. 3D image 

atches centered at the same location in the image are used as in- 

uts to the two pathways. The image is downsampled to a third 

f its original size for the second pathway. Several U-Net based 

pproaches have been proposed for segmenting cerebral vessels 

nd aneurysms [6–9] . The method proposed by Livne et al. [6] is 

rained to segment cerebral vessels using 2D patches extracted 

rom MRA images [11] with a U-Net. The method proposed by 

hahzad et al. [9] segments ruptured intracranial aneurysms result- 

ng in subarachnoid hemorrhage in CTA images using DeepMedic. 

hou et al. [15] proposed U-Net++ as a new framework for im- 

ge segmentation to further improve segmentation performance. 

he redesigned skip connections in U-Net++ aggregate features 

cross multiple scales within decoder sub-networks, leading to a 

ighly flexible feature fusion scheme. Attention modules have been 

idely used in vessel segmentation networks to weigh the impor- 

ance of relevant but under-represented structures/features [26–

9] . However, stand-alone segmentation networks trained and ap- 

lied to imaging data without using appropriate pre, and post- 

rocessing steps typically lack robustness when segmenting fine 

tructures (such as vessels and aneurysms) in the presence of sig- 

ificant class imbalance and variability in image appearance and 

oft-tissue contrast (typical of imaging data acquired across multi- 

le centers). Therefore, to facilitate robust segmentation of diverse 

maging data with imbalanced classes, Isensee et al. [1] proposed 

nU-Net, which can automatically configure itself, including pre- 

rocessing, network architecture, and training and post-processing 

or any new task in the biomedical domain. The nnUNet improves 

he robustness of the model by learning fixed, rule-based and em- 

irical parameters. 

The methods discussed thus far achieved state-of-the-art seg- 

entation performance for cerebrovascular structures. However, 
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everal challenges remain to enable precise and robust characteri- 

ation of cerebral vessels and aneurysms in 3D, namely, effectively 

ealing with the severe class imbalance, the difficulty of distin- 

uishing between the aneurysm and vessel lumen, and the lack of 

 robust deep learning framework for segmenting cerebral vessels 

nd aneurysms for multi-center studies. Firstly, the aneurysm re- 

ion often constitutes less than 1% of the overall image volume. 

he features extracted from the small regions such as fine vessels 

nd aneurysms may not be effectively propagated through a series 

f convolutional and up-/down-sampling layers by conventional 

NN-based networks. Secondly, vessel interference is the main rea- 

on for over-segmentation due to the similarity of closed vessels in 

atch boundaries to aneurysms in morphology. Last, multi-center 

maging data varies considerably in image appearance and spa- 

ial resolution due to different scanners and image acquisition pro- 

ocols across different institutions. All these factors make precise 

egmentation of cerebral vessels and aneurysms challenging. Ad- 

ressing these challenges is the main focus of this study and here 

re the contributions: 

1) A dual-class segmentation network is proposed for the au- 

omatic segmentation of cerebral vessels and aneurysms in 3DRA 

mages. To deal with the class imbalance inherent in such a seg- 

entation task, especially for aneurysms, we proposed a cas- 

aded transformer block at the end of the encoder to highlight 

neurysm features. Multi-view blocks are designed to receive con- 

inuous features in a lower feature dimension. Learnable down- 

ample blocks are proposed at the end of every encoder block 

o prevent small features from being washed out during down- 

ampling. Wide blocks are designed to extract high-level features 

n multi-dimensions. 

2) For the inter-class interference challenge, we designed the 

ulti-class network with weighted Dice loss and set aneurysms 

s a subclass of vessels. The semantic guidance from vessel fea- 

ures reduces the interference of brain tissue and skull with 

neurysms and can significantly improve aneurysm segmentation 

erformance. 

3) To further enhance the aneurysm segmentation performance, 

e designed a post-processing pipeline including majority voting 

nd self-refinement which can predict accurate aneurysm localiza- 

ion and boundary. 

4) For hemodynamics simulation analysis, to the best of 

ur knowledge, previous methods have segmented vessels or 

neurysms individually and most experiments have been validated 

n image-based evaluation metrics like Dice. Whether the inde- 

endent outputs of these segmentation methods are suitable for 

essel and aneurysm simulation is still unknown. Our method al- 

ows the simultaneous segmentation of shape-consistent vessels 

nd aneurysms. More importantly, after generating the mesh from 

he image-based output, a mesh-based surface-to-surface error 

valuation was performed to verify that the output is suitable for 

imulation (surface-to-surface error 0.20 mm for aneurysm seg- 

entation and 0.25 mm for vessel segmentation, less than the 

n-plane resolution 0.35 mm/pixel). The automatic segmentation 

ipeline can bridge the gap between clinical data and hemody- 

amic simulation input. 

We comprehensively evaluated the proposed approach across 

wo 3DRA datasets: an in-house multi-center @neurIS dataset 

18] and a publicly available cerebral aneurysm detection and anal- 

sis dataset (CADA) [19] . 

. Materials and methods 

This section describes the 3D multi-class cerebral vessel and 

neurysm segmentation network proposed in this study and the 

verall pipeline developed to ensure robust and reproducible seg- 

entation performance. The proposed multi-class CNN incorpo- 
3 
ates several architectural components dedicated to preserving fine 

tructural details in-plane across multiple orthogonal planes, and 

nsures consistency in 3D for the vascular structures of inter- 

st. The proposed pipeline comprises three steps: pre-processing, 

ulti-class segmentation, and post-processing in Fig. 2 . Details of 

ach step of the pipeline and the architectural components devel- 

ped for the multi-class segmentation network are discussed in 

ubsequent subsections. 

.1. Step1: Pre-processing 

The first step in our segmentation pipeline focuses on process- 

ng the original 3DRA image volumes to generate 3D image patches 

uitable for training the multi-class segmentation network. Before 

xtracting patches from the image volumes, we use a sequence 

f operations to reduce the variability across patients’ images 

nd stabilize subsequent segmentation network training. As the 

patial resolution varies across patients’ images in the @neurIST 

atabase, we standardized the resolution of all image volumes 

y resampling them to a fixed voxel size of 0 . 35 × 0 . 35 × 0 . 35

m . We also applied histogram equalization to the resampled im- 

ge volumes to reduce differences in tissue contrast across pa- 

ients’ images. Then, we normalized voxel intensities in all images 

o [0,1]. Vascular structures are only partially labeled within the 

neurIST dataset, with ground-truth segmentations available just 

or the major cerebral arteries and their branches in the vicinity 

f the aneurysm. Hence, we cropped each image volume using a 

ounding box encapsulating the labeled structures to reduce la- 

el noise/confounding information when training the segmentation 

etwork. Finally, we extracted 3D patches of size 64 × 64 × 64 vox- 

ls from the cropped volumes, discarding all patches that had no 

ssociated labels for the vessels or aneurysm, and used the remain- 

ng patches for training our segmentation network. 

.2. Step2: Multi-class segmentation network 

The backbone of our multi-class segmentation network’s ar- 

hitecture is U-Net++ [15] , a deeply supervised encoder-decoder 

etwork with nested dense connections across convolution blocks 

estled between the encoder and decoder paths (as illustrated in 

ig. 2 ). The nested dense skip pathways help aggregate multiscale 

eatures at each convolution block in the decoder from all con- 

olution blocks at the same resolution level or below (relative to 

he former) in the encoder. These dense connections help alle- 

iate the restrictive behavior of skip connections (allowing only 

or the same-scale fusion of learned features) used in the origi- 

al U-Net architecture and its variants. They enable rich seman- 

ic multiscale features from different encoder blocks to be used 

y each decoder block to generate segmentations. Additionally, we 

ropose several additional feature extraction modules (discussed in 

ubsequent sections) integrated into this backbone U-Net++ archi- 

ecture to increase the network’s sensitivity to detect vessels and 

neurysms. 

.2.1. Cascaded transformer 

Cerebral vessels and aneurysms constitute less than 6% of 

he overall image volume in 3DRA images [47] . This leads to a 

ignificant class imbalance between the foreground (vessels and 

neurysms) and background (surrounding tissues) classes. We de- 

igned a cascaded transformer block to address this challenge, 

hich adaptively increases the network’s attention on vessels and 

neurysms [16,31] . As shown in Fig. 3 ., we first exploited this mod- 

le at the end of the encoder to integrate local features with their 

lobal dependencies along the spatial and channel dimensions in 

arallel paths. The spatial attention module on the top left selec- 

ively highlights the locations that comprise vessels and aneurysms 
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Fig. 2. Schematic of the proposed cerebral vessels and aneurysm segmentation pipeline comprising three steps. Step 1: shows the pre-processing operations applied to the 

original 3DRA images; Step 2: shows the architecture of the proposed multi-class CNN-based segmentation model; Step 3: shows the post-processing operations applied to 

segmented images based on majority voting and self-refinement. 
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y a weighted sum of the features from all locations. Meanwhile, 

he channel attention module on the top right enhances the inter- 

ependence between different channels through a sequence of per- 

utation and dot product operations acting channel-wise on the 

nput feature maps. Then, we exploited three multi-head attention 

odules cascaded with multilayer perception (MLP) in latent space 

o further learn features with a wider spatial context. Since the 

eature order in latent space is learned by the model rather than 

y spatial position, we removed the position embedding layer here 

o reduce artificial interference and provide more room for learn- 

ng. Finally, we add the features from different attention stages, in- 

reasing training stability and the weight of key features specific 

o vessels and aneurysms to enhance overall segmentation perfor- 

ance. 

.2.2. Multi-view block 

Learning representative features of fine vessels is challenging as 

hey may be as few as two pixels in diameter in Fig. 13 . Because

f the presence of noise points in the low-level features, convo- 

ution with a kernel size three has difficulty distinguishing noise 

rom such subtle features with a diameter of less than three. These 

oise-like features are either filtered out or over-enhanced by us- 

ng only small kernel 3D convolution filters. But in large receptive 

eld, this continuous and uniformly slender feature will be com- 

letely different from the noise point feature. We propose a multi- 

iew convolution block composed of three branches to extract 2D 

eatures in the larger receptive field along orthogonal planes of 

he 3D image volume to tackle this challenge. This enables feature 

earning and orthogonal views, which are subsequently aggregated, 
4 
o highlight the slender features specific to fine vessels. This repre- 

ents finer vascular structures than conventional 3D convolutions. 

esides, we are also interested in preserving the 3D structure and 

orphology of vessels and aneurysms, which is somewhat lost us- 

ng just 2D orthogonal convolutions. Hence, we also use a 3D con- 

olution layer alongside each multi-view block in our network, and 

dd the features learned by the former and latter. This combination 

f the multi-view block and a 3D convolution layer ensures that 3D 

ontextual features are learned and aggregated with detailed fea- 

ures of fine vascular structures. The structure of the multi-view 

lock is shown in Fig. 4 . 

.2.3. Learnable downsample block 

Down-sampling of learned feature maps through pooling op- 

rations is essential in CNNs to increase the receptive field size 

f the network and enable learning of hierarchical features while 

eeping model complexity (i.e. the number of learnable param- 

ters) reasonable to reduce overfitting and ensure computational 

ractability. During down-sampling, weak features of small vessels 

nd aneurysms are easily ignored/lost if standard pooling opera- 

ions are used (e.g. max-pooling). We designed a learnable down- 

ample block to retain weak features to compensate for this. This 

lock halves the size of the input feature maps along three par- 

llel branches comprising two stridden convolution branches and 

 max-pooling branch, as illustrated in Fig. 5 (left). These three 

ranches dissociate the spatial and channel information through a 

D convolution layer (with a kernel size of 3) for the former and 

hree parallel 2D convolutional layers (multi-view block) of factor- 

zed asymmetric 3D convolutions for the latter (as shown in Fig. 5 ). 
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Fig. 3. Transformer block. Increased attention to aneurysms and fine vessels. 
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his enables effective learning of spatial and channel-wise features 

longside down-sampling of the feature maps in each individual 

ath. The max-pooling path downsamples the input feature maps 

nd aggregates them across channels using a 3D convolution layer 

ith a kernel size of one. The resulting feature maps from all three 

ranches are subsequently concatenated, resulting in downsampled 
ig. 4. Multi-view block. Extract features from three orthogonal views using 2D convolut

iews, but the slender feature is easily captured in the first view. 

5 
eature maps that have preserved weak features across multiple 

cales and dimensions. 

.2.4. Wide block 

To further increase the receptive field size of the network, with 

 limited increase in model complexity, and learn features with a 

ider spatial context, we designed the wide block. This module 

omprises three branches in Fig. 5 (right). One branch aggregates 

he feature maps across channels and learns local features with a 

D convolution of kernel size three. The other two branches utilize 

symmetric 3D convolutions applied in parallel and serially with a 

arge kernel size to learn multiscale features along all dimensions. 

he resulting feature maps from each branch are finally concate- 

ated and provided as input to subsequent network layers. 

.2.5. Loss function 

The aneurysm regions account for only a small part of the brain 

mage, and a critical imbalance exists in the distribution of the 

ositive and negative samples. Thus, following the generalized dice 

oss proposed in [49] , in this work, we used the weighted dice loss 

 Eq. (1) ) [25] that weights inversely proportional to labels area, in 

rder to better predict labels with general small regions, i.e., the 

neurysms in our case. w a and w v are the weights of the aneurysm 

nd vessel volume in Eq. (2) . Dice is calculated in Eq. (3) . Because

f the class imbalance issue, we compensated for this by mul- 

iplying the Dice of aneurysm segmentation whose proportion is 

mall by the larger weights and multiplying the vessel segmenta- 

ion whose proportion is big by the smaller weights. 

oss = w v ∗ Dice a + w a ∗ Dice v (1) 

 a = 

V a 

V a + V v 
, w v = 

V v 

V a + V v 
(2) 

.3. Post-processing 

.3.1. Majority voting 

The multi-class segmentation network processes patch data. In 

he segmentation result of a single patch, a vessel near the patch 
ions in large kernels. The fine vessel feature is not obvious in the second and third 
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Fig. 5. Learnable downsample block (left) and wide block (right). 

Fig. 6. Patch grouping example and inference results. 2D image have four patch groups, 3D image will have eight patch groups. The different colors represent the different 

patch groups. The label shows here is an aneurysm and the prediction of eight different groups is correct. 
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s
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dge has a closed geometry and is therefore incorrectly identi- 

ed as an aneurysm. After ensembling the predictions of patches 

ogether, there will be over-segmentation of aneurysms like the 

ourth column of Fig. 2 . As visualized in Figs. 6 and 7 , the 2D image

s divided into four groups of patches represented in red, yellow, 

reen and blue boxes. Similarly, the 3D image is divided into eight 

roups of patches. Each group of patches is fed into the multi-class 

odel for prediction. For true aneurysms in 6 , all eight groups had 

ositive prediction results (eight votes). For fake aneurysms (ves- 

els near the patch edge mentioned above) in Fig. 7 , only four 

roups (pred 2, 4, 6, 7) had positive prediction results (four votes), 

he remaining four groups (pred 0, 1, 3, 5) did not predict the con- 

roversial area to be an aneurysm. Therefore, after ensembling the 

esults of eight groups, we keep only the predicted area with the 

ighest number of votes and use this area as the aneurysm predic- 
6 
ion of majority voting. The proposed approach decomposes each 

DRA image volume into eight groups of patches and uses these 

o train the multi-class segmentation network. The starting points 

f the eight groups are the eight vertices of the 3D image after 

ero-padding, which is to ensure the eight groups do not over- 

ap completely. Patch-based learning allows semantic features to 

e learned from the 3DRA images in their native resolution with 

 limited degree of down-sampling throughout the network, not 

fforded by methods that learn features directly from the original 

mage volumes due to GPU memory constraints. 

.3.2. Self-refinement 

The fourth column of Fig. 2 shows that the aneurysm may 

till be inaccurately over-/undersegmented. Therefore, we refine 

he segmentation results by selecting one patch centered on the 
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Fig. 7. Patch grouping example and inference results. The label shows there is no aneurysm. The predictions of pred0, 1, 3, and five are correct, and pred2, 4, 6, and seven 

are incorrect, which will cause over-segmentation. 

Fig. 8. Examples of images collected in the @neurIST dataset: 2D visualization of data from different four sources showed great differences in pixel distribution and aneurysm 

size. 
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u

neurysm prediction (after majority voting) and feeding this patch 

nto the multi-class model to predict the aneurysm’s shape. If there 

re multiple independent aneurysms, patches will also be selected 

ultiple times. During this process, the predictions close to the 

dge of the patch are ignored to prevent interference from ves- 

els at the edges here. Finally, we can obtain aneurysm predictions 

ith correct locations and accurate boundaries in the fifth column 

f Fig. 2 . 

By combining majority voting with self-refinement, we can pre- 

ent vessels at the edge of the patch from being predicted as 

neurysms, effectively suppressing aneurysm over-segmentation. 

. Experimental setup 

.1. Datasets 

The proposed method is trained and validated on 3DRA images 

rom 223 patients acquired from the @neurIST project [18] . These 

mages were acquired across four different centers with different 

canners and imaging protocols. There are significant variations in 

mage appearance and resolution across image data from different 

enters, as shown in Fig. 8 . Image data from the @neurIST database 

ere split patient-wise into training, validation, and test sets us- 

ng a ratio of 7 : 1 : 2 , respectively, and five-fold cross-validation

xperiments were conducted to thoroughly evaluate the segmen- 
7 
ation performance of the proposed approach and the state-of-the- 

rt methods. The test sets in different cross-validation experiments 

raverse the entire data set. We also trained and evaluated our ap- 

roach on a publicly available dataset, CADA [19] , which comprises 

omputerized tomography (CT) images of patients with cerebral 

neurysms. These images were acquired as part of the Cerebral 

neurysm Detection and Analysis challenge, hosted at the inter- 

ational conference on medical image computing and computer- 

ssisted interventions in 2020. The training data released as part 

f the CADA challenge comprised 109 3DRA images with 127 anno- 

ated aneurysms. We also split the labeled data into training, vali- 

ation, and test sets by patient in a 7 : 1 : 2 ratio. When preparing

he training data, we randomly extracted 3D patches around the 

neurysm. Negative patches that did not contain aneurysms were 

ot selected for training. When training the segmentation model, 

here were 904 patches extracted from the cropped volumes, with 

16 patches being used as the training set and the rest patches 

eing used as the validation set to monitor the training process. In 

ddition, we applied data augmentation for these patches includ- 

ng left and right 90-degree rotation. 

.2. Network training 

The proposed multi-class segmentation network was trained 

sing the Adam optimizer [24] with a learning rate of 0.0 0 03. 
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Table 1 

Comparison of model complexity in terms of model pa- 

rameters and training time/epoch between the proposed 

method and the benchmark networks. 

Model complexity Total params Training time 

U-Net + 1,857,939 78 s/epoch 

Dual Attention Net 1,633,747 60 s/epoch 

DeepVesselNet 1,608,147 57 s/epoch 

Vessel-CAPTCHA 16,337,666 161 s/epoch 

Ours 16,812,195 182 s/epoch 
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he model converged after ten epochs, and the validation loss 

as minimized around 30 epochs. All experiments were conducted 

n an NVIDIA 1080Ti GPU with 11 GB memory. The batch size 

as kept consistent across all experiments and was set to four. 

he best model is chosen according to the validation loss. We 

rained the network of Step2 in Fig. 2 with the above setting 

nd shared the best weight to majority voting and self-refinement. 

able 1 provides the comparison of model complexity in terms of 

odel parameters and training time/epoch, between the proposed 

ethod and the benchmarked networks. Table 2 shows the hyper- 

arameter configurations for the benchmarked networks and our 

ethod. The loss functions of UNet, Dual Attention Net, UNet++, 

nd 3DResUNet in benchmark methods are consistent with the 

roposed method, i.e., the weighted dice loss. The loss function 

f DeepVesselNet and nnUNet is Dice loss + CrossEntropy. We 

ept their original loss functions since DeepVesselNet and nnUNet 

re self-contained, highly encapsulated frameworks with dedicated 

re-processing and post-processing strategies, and changing their 

oss functions may affect their overall performance. 

.3. Evaluation metrics 

The proposed multi-class segmentation network is used to seg- 

ent both cerebral vessels and aneurysms, denoted as y pred . Sev- 

ral evaluation metrics are used to evaluate the similarity of the 

asks predicted for vessels and aneurysms individually regarding 

round-truth masks (denoted as y true ). These include the Dice (or 

 1 ) score, Jaccard (JAC) index, and the volume similarity (VS) index. 

The Dice similarity index [30] measures overlap between y pred 

nd y true and is calculated: 

ice = 

2 × T P 

F P + 2 × T P + F N 

. (3) 

The Jaccard index [30] is computed as the intersection over the 

nion of two sets and measures the similarity and diversity be- 

ween two sets. It is computed: 

AC = 

T P 

F P + T P + F N 

. (4) 

The VS index [30] measures the similarity between segmented 

egions of interest volumes in the predicted and ground-truth 

asks. It represents the absolute volume difference divided by the 
Table 2 

Summary of the hyper-parameter configurations for the benchmarked n

Hyper-parameters U-Net + Dual Attention Net DeepVesselNe

Optimizer Adam Adam Adam 

Learning Rate 0.0003 0.0003 0.0003 

Epochs 40 40 40 

Batch Size 4 4 4 

Patch Size 64 64 64 

Dimension 3D 3D 3D 

8

um of the compared volumes. 

 S = 1 − abs (F N − F P ) 

F P + 2 × T P + F N 

. (5) 

The surface-to-surface distance error [23] metrics estimate the 

rror between the ground-truth surfaces S, and the segmentation 

rediction surfaces S ′ . The distance between a point p i on surface S

nd the surface S ′ is given by the minimum of the Euclidean norm. 

nd we compare the similarity between the predicted and ground- 

ruth vessel and aneurysm geometries by generating surface mesh- 

ased representations of these structures from their corresponding 

asks. 

(p i , S 
′ ) = min 

p ′ ∈ S ′ 
∥∥p i − p ′ 

∥∥
2 

(6) 

Doing this for all N points in the ground-truth surface S gives 

he average surface-to-surface distance error: 

 (S, S ′ ) = 

1 

N 

i ∑ 

N 

d (p i , S 
′ ) (7) 

As highlighted, the ground-truth masks available for the 

neurIST dataset are only partially labeled, i.e. vessel masks cover 

nly the major artery branches near the aneurysm rather than 

he entire vascular tree visible within the 3DRA image field-of- 

iew. On the other hand, as our segmentation framework is trained 

atch-wise to retain fine vascular details, during inference, our ap- 

roach can segment the entire vascular tree using the learned rep- 

esentations for identifying vascular structures within the image 

olume. This results in a large proportion of correctly identified 

ixels as vessels, for which no ground-truth labels exist. Thus, the 

urface-to-surface distance may be more appropriate in this sce- 

ario as it only computes the distance errors for the GT labeled 

egion. 

Across all comparative evaluations conducted comparing the 

roposed segmentation framework with state-of-the-art ap- 

roaches and in the ablation study evaluating the impact of each 

odule included in the proposed multi-class network, we assess 

he statistical significance of the obtained segmentation results us- 

ng paired-sample Student’s t-tests. 

. Results 

.1. Visual comparison 

Figure 9 illustrates the 3D renderings of obtained segmentation 

esults captured in the entire field of view in 3DRA images. These 

ata samples were randomly selected from different data collection 

enters. As can be seen, the proposed method can capture much 

ore abundant vascular structures in the images, which were mis- 

abelled as the background in manual annotations. The segmented 

esults preserve the continuity and topology of the vascular trees 

nd are visually comparable to the annotated regions. 

The surface meshes generated using the vessel and aneurysm 

egmentations predicted at different stages of our segmentation 
etworks and the proposed method. 

t 3DResUNet Vessel-CAPTCHA nnUnet Ours 

Adam Adam SGD Adam 

0.0003 0.0003 0.001 Decay 0.0003 

40 40 200 40 

4 64 4 4 

64 64 64 64 

3D 2D 3D 3D 
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Fig. 9. 3D renderings of obtained segmentations. These data samples were selected from different centers. 

Fig. 10. 3D renderings of obtained segmentations after different steps. 
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ipeline are shown in Fig. 10 . These figures demonstrate the util- 

ty of the proposed post-processing steps to suppress false-positive 

redictions for the aneurysm and refine the same. Cropped ves- 

els share similarities in topology and appearance with aneurysms 

ear patch boundaries. Therefore, initial segmentation using the 

roposed multi-class segmentation network (step 2 in Fig. 2 ) is 

rone to incorrectly labeling tortuous vessels and vessels near 

atch boundaries as aneurysms (example in the third column of 
9 
ig. 10 ). These false-positive predictions for aneurysms are arti- 

acts of patch-based learning due to the limited spatial context 

vailable to the network during feature learning and can be effec- 

ively reduced using majority voting (described as part of the post- 

rocessing step earlier in Section 2.3 -C). The resulting aneurysm 

egmentation following the suppression of false positives by ma- 

ority voting (see the fourth column of Fig. 10 ) is used to provide

neurysm location and extract patches in the neighborhood, which 
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Fig. 11. Maximum intensity projection for vessel segmentation. The yellow box is the golden standard area, where all quantitative evaluations are carried out. Our method 

captures more fine vascular structures than its state-of-the-art counterparts. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 12. Surface-to-surface error. Upper left: vessel overlap of ground-truth (blue) and prediction (translucid white). Upper right: surface-to-surface vessel error. Bottom 

left: aneurysm overlap of ground truth (red) and prediction (orange). Bottom right: aneurysm surface-to-surface error. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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tion and the other for 2D convolution in multi-view blocks. In 
re fed back into the multi-class network to refine the segmenta- 

ion near the aneurysm (called’ self-refinement). The improvement 

n aneurysm segmentation accuracy afforded by these two post- 

rocessing steps involving majority voting and self-refinement is 

lso highlighted for the test set in Fig. 10 . 

Visual comparisons of the maximum intensity projections of 

egmentations predicted using our approach, and those predicted 

y state-of-the-art techniques for two samples from the @neurIST 

est set are presented in Fig. 11 . These figures highlight our ap- 

roach’s ability to preserve fine vascular structures greater than 

ts state-of-the-art counterparts. In the @neurIST dataset, ground- 

ruth masks are available only for large vessels near the aneurysm 

n the second column of Fig. 11 . Therefore, for every case, after get-

ing the final segmentation result, we cropped the prediction into 

 mask with the same size and position as the ground truth. Then 

he cropped mask is quantitatively evaluated with ground truth. 

ue to the lack of annotation of small vessels, the image-based as- 
10 
essment does not provide the most reasonable evaluation of the 

egmentation effect. In addition to evaluating segmentation quality 

sing image-based metrics such as Dice, we computed the surface- 

o-surface distance error between the predicted and ground-truth 

eshes by reconstructing the former just within the field of view 

f the corresponding ground-truth mask. The surface-to-surface er- 

or metric also provides information regarding the spatial distri- 

ution of errors across the anatomical structures of interest, i.e., 

apping the vertex-wise nearest neighbor distances between the 

redicted and ground-truth meshes onto each former vertex (as 

hown in Fig. 12 ). Evaluation of surface-to-surface errors in this 

anner thus provides spatial context to where segmentation er- 

ors are incurred and help quantify localized errors, complement- 

ng other global image-based metrics (such as Dice) used to evalu- 

te segmentation performance. 

Each block of our encoder is dual-path, one for 3D convolu- 
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Fig. 13. Comparison of maximum intensity projection between multi-view block (yellow), three conv3D-3 × 3 ×3 layers, and one conv3D-5 × 5 ×5 layer (green). The multi- 

view block can predict more small vessels even not annotated in the label. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 14. Visual comparison of attention maps with and without cascaded transformer. The first, second, third, and fourth rows are the image MIPs, vessel and aneurysm 

segmentation ground truth, attention maps without the cascaded transformer, and attention maps with the cascaded transformer, respectively. As can be seen by comparing 

each case in the same column, with the cascaded transformer, the model reduces focus on irrelevant context structures like vessel bend and bifurcation. 
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ig. 13 , to verify that the role of the multi-view block is to pro-

ide additional fine features to the 3D convolution backbone path- 

ay rather than adding more parameters, we replaced the three 

rthogonal 2D convolution layers in the multi-view block with 

hree 3D convolution layers in kernel size 3 or one 3D convolu- 

ion layer in kernel size 5. The multi-view block has fewer pa- 

ameters than the other two settings but can mine additional fea- 

ures that are different from the 3D convolution features. Com- 

aring the predictions in the red box, the multi-view block can 

redict more small vessels even those not annotated on the la- 

el. We have also performed an ablation study with and with- 

ut the cascaded transformer and visualized the attention maps 

verlaid on the original images, as shown in Fig. 14 . As can be

een by comparing each case in the same column, with the cas- 

aded transformer, the model reduces focus on irrelevant context 

tructures like vessel bend and bifurcation. Besides, the aneurysm 

ecks are better identified with the attention of the cascaded 

ransformer. 

.2. Quantitative evaluation 

Quantitative metrics summarize our approach’s segmentation 

erformance and the state-of-the-art, namely, U-Net++, Dual At- 

ention Net, DeepVesselNet, and nnUnet, across all test samples 
11
rom the 5-fold cross-validation experiments conducted using the 

neurist dataset is presented in Table 3 . All the quantitative evalu- 

tion results were calculated within a bounding box encapsulat- 

ng the GT labeled region (yellow box in Fig. 11 ). These results 

ndicate that our method consistently outperforms all competing 

ethods in the Dice score, Jaccard index, VS index, and the av- 

rage surface-to-surface error across the 5fold cross-validation ex- 

eriments conducted. The statistical significance of the obtained 

egmentation results was evaluated (using paired-sample Student’s 

-tests), revealing that our approach achieved significant improve- 

ents over the state-of-the-art in terms of Dice and the average 

urface-to-surface error metrics for both vessels and aneurysms. 

or vessel segmentation, all methods achieved a Dice score higher 

han 0.85, indicating that all methods (including ours) were well 

uited to this task. On the other hand, aneurysm segmentation was 

ore challenging as the target region often constitutes less than 

% of the overall image volume. We found that the state-of-the-art 

ethods investigated in this study failed to perform adequately on 

his task. nnUNet achieved the best results among the state-of-the- 

rt methods are dedicated pre-processing and post-processing ap- 

roaches, with a Dice of 0.67 and surface-to-surface error of 1.06 

m . Our approach provided the best aneurysm segmentation per- 

ormance, achieving a 15% and 0.86 mm improvement over nnUNet 

n terms of aneurysm Dice and surface-to-surface error. 
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12 
Tables 4 summarizes the results from the ablation study con- 

ucted to evaluate the impact of each module included in the pro- 

osed multi-class segmentation network on the quality of the pre- 

icted vessel and aneurysm segmentation, respectively. The abla- 

ion studies which remove modules separately were conducted to 

erify whether each module contributed positively to the final seg- 

entation performance and determine the importance of different 

odules. Due to the dataset being partially labeled, the Dice val- 

es can not measure unlabeled fine vessels and small aneurysms, 

o we use surface-to-surface error to measure the performance on 

abeled parts. Model 1 to Model 5 represent the cases where one 

odule is removed from the final model. The results comparison 

etween ours with Model 1 to Model 5 show that the surface-to- 

urface error is increased no matter which module is discarded, 

roving that each adopted technique contributes to the improved 

ccuracy of vessel segmentation. The final model yields the small- 

st surface-to-surface error in aneurysm segmentation. The ab- 

ence of certain modules can lead to completely incorrect segmen- 

ation results, thus reducing overall segmentation performance on 

 test set, so each module is essential for aneurysm and vessel seg- 

entation. 

We also compared single-class segmentation networks (trained 

ndividually for aneurysm and vessel segmentation) with the 

ulti-class network, where identical network architectures were 

sed except for the output layer. Results from this compari- 

on are presented in Table 5 , which highlights the added ad- 

antage of multi-class learning relative to training independent 

etworks for segmenting each structure individually. Our multi- 

lass network significantly outperforms the single-class network 

or aneurysm average surface-to-surface error (0.2021 vs 0.7051). 

owever, for vessel segmentation, the multi-class network only 

rovided a marginal improvement over the single-class network. 

ince aneurysms grow on blood vessels, the aneurysm part is 

lso labeled as part of the vessel during training, the learning of 

ascular features will have a positive effect on the extraction of 

neurysm features. 

The proposed approach was also trained and evaluated on 

he public cerebral aneurysm segmentation (CADA-AS) challenge 

ataset [5] . The segmentation performance of our approach was 

ompared against the best-performing methods in this challenge, 

DResUNet. When comparing these methods, instead of using 

28 × 128 × 128 patch size described in the challenge paper, an in- 

ut patch size of 64 × 64 × 64 was used to analyze and segment 

he images due to limited computing resources of 1080ti GPU card. 

esults summarizing aneurysm segmentation performance on test 

ata from the CADA-AS challenge are presented in Table 6 . Since 

he data is fully labeled, we add the Dice Similarity Index in ad- 

ition to surface-to-surface error. These results indicate that our 

pproach outperforms 3DResUNet, in terms of both metrics. 

A key aspect of quantitative analysis of cerebral aneurysms, 

ither in assessing cerebral hemodynamics or aneurysm rupture 

isk, is the precise characterization of their morphological prop- 

rties. Hence, besides evaluating aneurysm segmentation quality 

sing standard image-based and mesh-based metrics, we com- 

ared our approach with state-of-the-art segmentation approaches 

o preserve each segmented aneurysm’s maximum diameter and 

olume relative to the ground truth. The Bland–Altman plots [20–

2] in Fig. 15 , summarize the average errors between predicted 

nd ground-truth measurements for aneurysm maximum diame- 

er and volume and their corresponding 95% confidence intervals 

or each method investigated. These results indicate no apparent 

ias in our model’s ability to preserve critical morphological char- 

cteristics of aneurysms, unlike DeepVesselNet, for example. Addi- 

ionally, the average errors incurred by our approach regarding the 

round-truth measurements are consistently lower than all com- 

eting approaches. 
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Table 4 

Ablation study. These models are in the same pre-processing and post-processing method (proposed). The experiments remove different modules separately. Due to the 

dataset being partially labeled, the Dice values can not measure unlabeled fine vessels and small aneurysms, so we use surface-to-surface error to measure the performance 

on labeled parts. 

Surface-to-surface error (mm) 

Model Model 1 Model 2 Model 3 Model 4 Model 5 Ours 

Absent module Nested Block Multi-view Transformer L-Down Wide 

Modules UNet Multi-view 

Transformer 

L-Down Wide 

U-Net + Transformer 

L-Down Wide 

U-Net + Multi-view 

L-Down Wide 

U-Net + Multi-view 

Transformer Wide 

U-Net + Multi-view 

Transformer 

L-Down 

U-Net + Multi-view 

Transformer 

L-Down Wide 

Vessel 0.3127 ± 0.2462 0.3329 ± 0.3466 0.3327 ± 0.3258 0.3286 ± 0.2876 0.3137 ± 0.2536 0.2586 ± 0.3066 

Aneurysm 0.4630 ± 1.0255 1.0878 ± 4.2235 0.3658 ± 0.7354 0.2738 ± 0.3327 0.3921 ± 0.6521 0.2021 ± 0.1790 

Table 5 

Comparison between single-class and multi-class. The pre-processing and post-processing of the experiments are the 

same. 

Training type Single-class Multi-class 

Anatomical Structure Aneurysm Vessel Aneurysm Vessel 

Surface-to-surface error (mm) 0.7051 ± 0.9031 0.3024 ± 0.1641 0.2021 ± 0.1790 0.2586 ± 0.3066 

Fig. 15. Bland–Altman plots: Mean and difference of aneurysm radius and volume between ground-truth and predictions. Our method has a more compact distribution. In 

terms of clinical criteria, our predictions are much closer to the ground truth. 

Table 6 

Compare our method on the cerebral aneurysm segmentation (CADA-AS) 

dataset with its champion methods. All models were retrained and tested 

on this single-class dataset. 

CADA-AS 3DResUNet Ours 

Dice Similarity Index 0.7464 ± 0.1379 0.8737 ± 0.0747 

Surface-to-surface error (mm) 0.4102 ± 0.3924 0.3817 ± 0.3984 

Table 7 

False-positive prediction rate for the aneurysm with or without 

post-processing. 

Post-processing False-Positive Rate Dice Similarity Index 

✗ 65 / 223 0.6432 ± 0.3333 √ 

23 / 223 0.8163 ± 0.2672 

D
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t
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a

Table 8 

Average prediction time for one image vol- 

ume. 

Step Time 

Step1: Preprocessing 5 s 

Step2: Multi-class Segmentation 45 s 

Step3: Post-processing 46 s 

Total 96 s 

5

a

s

i

s

t

n

t

s

a

p

f

l

i

s

In addition, Table 7 has included the false-positive rate and 

ice score for the aneurysm segmentation before and after apply- 

ng the post-processing technique. As can be seen, the proposed 

ost-processing can fix 42 over-segmented aneurysm cases while 

mproving the overall Dice for aneurysm by 15%. Table 8 illustrated 

he average prediction time for one volumetric image generated by 

he proposed framework in different steps. The proposed method 

ses an average of 1.5 min to process an image volume for vessel 

nd aneurysm segmentation. 
13
. Discussion 

This paper presented a multi-class convolution neural network 

nd a 3D patch-based pipeline for cerebrovascular and aneurysm 

egmentation on 3DRA images. Vessel and aneurysm segmentation 

n 3DRA is very challenging due to the small percentage of ves- 

els and aneurysms and the interference of the skull. Compared 

o standardized, homogeneous data, clinical data exhibit more 

oise, heterogeneous, diverse appearance and resolution, making 

his task more challenging. With severe class imbalance, automatic 

egmentation methods struggle to extract the complete contextual 

nd local information from images. To alleviate those issues, our 

roposed network has a transformer block sensitive to small-scale 

eatures, multi-view blocks sensitive to continuous features, the 

earnable downsample block that prevents subtle features from be- 

ng lost, and wide blocks that expand local perceptual fields. Be- 

ides, the dedicated post-processing methods of majority voting 
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Table 9 

Compare our method on aneurysm segmentation success rate 

(surface-to-surface error smaller than 1 mm ) with SOTA meth- 

ods. 

Methods Aneurysm segmentation success rate 

U-Net + 150 / 223 

Dual Attention Net 152 / 223 

DeepVesselNet 144 / 223 

nnUNet 173 / 223 

Ours 190 / 223 

t

o

d

b

A

y

c

t

r

s
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H

1
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nd self-refinement can effectively suppress the over-segmentation 

f the clinical aneurysm, enhancing the entire pipeline’s clinical ro- 

ustness. 

.1. Class imbalance 

In whole brain tissue, the percentage of blood vessels is less 

han 6% [47] , and the proportion of aneurysms is less than that of 

essels. Hence, U-Net++ and Dual Attention Net are potent mod- 

ls that retain rich intermediate features and focus more on criti- 

al target information. However, these models can only capture the 

ain vessels and obvious aneurysms. Still, these models lose sub- 

le features during the convolution operation, viz., small aneurysms 

hose diameter is less than 10 mm. Our method designed multi- 

iew blocks and wide blocks for the class imbalance problem 

y extracting additional information to complement the backbone 

etwork feature. These blocks can extract continuous information 

hrough cascade and parallel low-dimensional convolution layers 

ith large kernels. We also exploited a transformer block at the 

nd of the encoder to enlarge the proportion of target features. In 

able 4 , after adding different new modules, the segmentation of 

oth aneurysms and vessels is improved, which also verifies that 

he proposed modules positively affect the final segmentation re- 

ults. In addition, in order to reduce the proportion of negative 

amples and thus make the training converge, when preparing the 

raining patches, we select the patches around the aneurysm as in- 

ut instead of feeding all patches obtained after cropping the data 

o a model. This can increase the proportion of aneurysms and ves- 

els in a single patch. 

.2. Inter-class separability 

Aneurysm segmentation usually suffers from inter-class inter- 

erence. Due to the prior knowledge that all aneurysms grow on 

essels while extracting the vessel features, the deep network 

lso extracts and enhances more potential aneurysm features near 

he vessels. Without proper guidance of vessel features in multi- 

lass, the single-class model may segment brain tissue or noise 

rea into aneurysms. The multi-class learning brings a huge boost 

o aneurysm segmentation. From Table 5 , multi-class aneurysm 

egmentation surface-to-surface error improved by 0.5 mm over 

ingle-class. 

.3. Inter-institutional data variability 

Our data were obtained from four institutions. While data from 

ifferent sources are all from the same modality, viz. 3DRA im- 

ges, there are large differences in image appearance, intensity 

istribution, resolution and aneurysm size ( Fig. 8 ). This poses a 

reat challenge to the robustness of the model. Automatic models 

uch as nnUNet and Deep Vessel Net use pre-processing and post- 

rocessing methods like patch-based learning and Gaussian stan- 

ardization. These methods perform well on challenging datasets 

ith good pre-processing. However, these segmentation methods 

ead to aneurysm over-segmentation in clinical data. To improve 

linical robustness, we propose majority voting, which returns the 

rediction most like an aneurysm to find the exact aneurysm local- 

zation. Then, self-refinement further corrects the aneurysm con- 

our details. Through our experiment, we found the necessity of 

he post-processing step in our current framework setting because 

) it helps to mitigate the over-segmentation of aneurysms due to 

he similarity of closed vessels in patch boundary to aneurysms in 

orphology; 2) it avoids to use of larger patch sizes that would 

urther aggregate the data imbalance and result in performance 

egradation in aneurysm segmentation. 
14 
The fourth column in Fig. 2 top shows majority voting returns 

he maximum prediction probability and effectively suppresses 

ver-segmentation. The later self-refinement makes the aneurysm 

etails more accurate. To validate the robustness of the pipeline, 

esides clinical data, we also evaluated our method on the CADA- 

S competition dat aset (c.f. Table 6 ). Our segmentation method 

ielded results close to the championship method [19] . For in silico 

linical trials, the accuracy of aneurysm localization is as impor- 

ant as Dice and Surface-to-surface error. Table 9 shows the success 

ate of aneurysm prediction for each algorithm. Only cases with a 

urface-to-surface error of less than 1 mm were defined as success 

ases, which means that such cases have accurate localization and 

egmentation. In 223 clinical cases from four different data centers, 

ur method yielded accurate aneurysm prediction in 190 cases. 

owever, among other methods, the best is nnUNet which only got 

73 success cases. In addition, our method outperforms these com- 

arative methods in terms of clinical indicators such as aneurysm 

iameter and volume. The Bland–Altman plots in Fig. 15 demon- 

trate that our method yields a difference of -0.03 ± 0.54 mm and 

4.4 ± 71.1 mm 

2 in aneurysm diameter and volume with ground 

ruth, which is the smallest (best) compared to other methods. 

Although our method achieved improved performance for au- 

omatic segmentation of vessels and aneurysms, due to the lim- 

tation of incomplete labeling of 3DRA datasets, the wrongly la- 

eled background pixels for missing vessels could interfere with 

he overall training process. Thus, future work would involve lever- 

ging semi-supervised schemes to enhance the learning of unla- 

elled parts, e.g., relabelling the missing annotations during the 

raining process by introducing pseudo-labels. Meanwhile, since 

here are still a large number of unlabelled 3DRA image data in 

ur clinical dataset, the joint training of the labeled 3DRA data and 

nlabeled data under a semi-supervised setting is also a worthy 

irection of research. 

. Conclusion 

This work proposed a 3D patch-based multi-class model for 

essel and aneurysm segmentation on 3DRA images. The proposed 

pproach addressed class imbalance problems and inter-class inter- 

erence problems in multi-class segmentation. Experimental results 

howed that the proposed method outperformed several popular 

tate-of-the-art approaches for tackling similar challenges, such as 

-Net++, DeepVesselNet, and nnUNet. This work aims to alleviate 

lass imbalance and inter-class interference, which are common 

nd challenging problems in cerebrovascular and aneurysm seg- 

entation. The deliberately designed network architectures such as 

he cascaded transformer, multi-view block, and wide block as well 

s the proposed post-processing strategies of the majority voting 

nd self-refinement contribute positively to mining vascular and 

neurysm features through the proposed end-to-end trainable net- 

ork. The aforementioned issues are also present in brain MRA 

nd CTA when it comes to cerebrovascular and aneurysm segmen- 

ation. The proposed model is generic and can be applied to mit- 

gate the issues of class imbalance and inter-class interference in 
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rain MRA and CTA, promising to facilitate accurate clinical analy- 

es. The systematic evaluation of the model performance on other 

odalities would be the scope of future work. 
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