ABSTRACT

and a second destanding of the second destandi

[†] Joint last authors

2. METHODS

$$x_i^{s \to t} = \mathcal{F}^{-1}[\mathcal{F}_P(x_i^s), \mathcal{F}_A(x_i^t) \cdot \mathcal{K}_{HSG} + \mathcal{F}_A(x_i^s) \cdot (1 - \mathcal{K}_{HSG})]$$
(1)

$$\mathcal{L}_{fully} = \frac{1}{N_s} \sum_{i=1}^{N_s} \left(1 - \frac{2|p_i^s \cap y_i^s|}{|p_i^s| + |y_i^s|} - y_i^s \log\left(p_i^s\right) \right) \quad (2)$$

$$\mathcal{L}_{semi} = \frac{1}{N_s} \sum_{i=1}^{N_s} \left(p_i^s - p_i^{s \to t} \right)^2 + \frac{1}{N_t} \sum_{i=1}^{N_t} \left(p_i^{t \to s} - p_i^t \right)^2$$
(3)

and the second s

$$h(u,v) = \frac{u^T v}{\|u\|_2 \|v\|_2}$$
(4)

$$pos_i^c = h\left(z_i^s, z_i^{s \to t}\right) + h\left(z_i^{t \to s}, z_i^t\right) \tag{5}$$

$$neg_i^c = h\left(z_i^s, z_i^{t \to s}\right) + h\left(z_i^{s \to t}, z_i^t\right) \tag{6}$$

$$pos_i^s = h\left(s_i^s, s_i^{t \to s}\right) + h\left(s_i^s, s_i^t\right) + h\left(s_i^{s \to t}, s_i^t\right) + h\left(s_i^{s \to t}, s_i^{t \to s}\right)$$

$$\tag{7}$$

$$\mathcal{L}_{transwarp} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{(e^{pos_i^c} + e^{pos_i^s})/\tau}{e^{pos_i^c} + e^{pos_i^s} + e^{neg_i^c}}$$
(8)

$$\mathcal{L} = \lambda_1 \cdot \mathcal{L}_{fully} + \lambda_2 \cdot \mathcal{L}_{semi} + \lambda_3 \cdot \mathcal{L}_{transwarp} \tag{9}$$

3. EXPERIMENTS

3.1. Datasets

$$\theta_{stu} = \alpha \cdot \theta_{stu} + (1 - \alpha) \cdot \theta_{tea} \tag{10}$$

$$\alpha = \min\left(1 - \frac{1}{iter + 1}, decay\right) \tag{11}$$

and a set of the set o and a set of the set o and a second sec and a set of the set o and the second sec and a set of the set o and a set of the set o supervised methods.

and a second second

0.00 m t test.						
Methods	DSC (%) ↑	Sen (%) ↑	Jac (%) ↑	VS (%) ↑		
$\mathcal{S} ightarrow \mathcal{T}$ [2]	31.48 ± 6.76	18.89 ± 5.00	18.88 ± 5.00	31.52 ± 6.75		
MSCDA [12]	41.18 ± 4.70	27.57 ± 4.96	26.04 ± 3.84	49.12 ± 8.69		
DAFormer [9]	57.75 ± 6.35	42.84 ± 8.07	40.89 ± 6.52	63.37 ± 9.70		
MIC [11]	67.16 ± 2.02	59.07 ± 7.16	50.59 ± 2.27	84.18 ± 9.49		
HRDA [10]	68.35 ± 2.74	60.03 ± 8.57	51.98 ± 3.14	83.31 ± 9.68		
Ours	72.65 ± 6.65 *	64.75 ± 8.06 *	57.46 ± 7.80 *	85.47 ± 9.65 *		
$\mathcal{T} ightarrow \mathcal{T}$ [16]	79.76 ± 1.92	74.61 ± 7.77	66.37 ± 2.69	90.06 ± 5.74		

Components	DSC (%) ↑	Sen (%) ↑	Jac (%) ↑	VS (%) ↑
\mathcal{L}_{fully}	61.84 ± 7.08	46.29 ± 8.48	45.16 ± 7.77	64.88 ± 8.47
\mathcal{L}_{semi}	64.60 ± 7.36	49.08 ± 8.75	48.00 ± 8.17	67.48 ± 8.42
$\mathcal{L}_{transwarp}$	67.55 ± 6.81	52.75 ± 8.65	50.95 ± 7.67	72.16 ± 8.47
Ours HSDA	72.65 ± 6.65	64.75 ± 8.06	57.46 ± 7.80	85.47 ± 9.65

4. CONCLUSION

5. REFERENCES