# Unsupervised Domain Adaptation for Brain Vessel Segmentation through Transwarp Contrastive Learning

Fengming Lin\*, Yan Xia\*, Michael MacRaild, Yash Deo, Haoran Dou, Qiongyao Liu, Kun Wu, Nishant Ravikumar\*\*, Alejandro F Frangi\*\*

## **Fengming Lin**

PhD student, School of Computing, University of Leeds, UK

Yan Xia: co-first author

Nishant Ravikumar: co-last author

Alejandro F Frangi: last author

alejandro.frangi@manchester.ac.uk, sdulinfm@gmail.com







- Motivations of vessel segmentation
  - Accurate diagnosis and surgery planning
  - Design medical devices for different patients



- Modalities of cerebral vessel analysis
  - 3DRA, MRA, DSA, CTA ...
- Challenges
  - Cross modality: domain shift between 3DRA and MRA



■ To deal with domain shift: unsupervised domain adaptation

• Fully-supervised Learning => Train with  $x_{3DRA}$ ,  $y_{3DRA}$ ; Test with  $x_{3DRA}$ 

• Semi-supervised Learning => Train with  $x_{3DRA}$ ,  $y_{3DRA}^{partial}$ ; Test with  $x_{3DRA}$ 

• Un-supervised Domain Adaptation => Train with  $x_{3DRA}$ ,  $y_{3DRA}$ ,  $x_{MRA}$ ; Test with  $x_{MRA}$ 

|                | Fully-supervised Learning |            | Semi-supervised Learning |               | Domain Adaptation     |                      |
|----------------|---------------------------|------------|--------------------------|---------------|-----------------------|----------------------|
| Train<br>Input | 3DRA Image                | Full Label | 3DRA Image               | Partial Label | 3DRA Image  MRA Image | Full Label  No Label |
| Test<br>Input  |                           |            |                          |               |                       |                      |

## Methods

- Pre-processing: Homocentric Squares Domain Adaptation (image style transfer)
- Network structure: teacher-student
- Loss function: fully-supervised loss + semi-supervised loss + transwarp contrastive loss



- Homocentric Squares Gaussian Kernel: Fourier Transform for style transfer
  - Low frequency: style information.
  - High frequency: content information.
  - Change square kernel into homocentric square kernel decaying in Gaussian distribution.

Fourier transform 
$$\widehat{f}\left( \xi
ight) =\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\;dx.$$
 (Eq.1)

Inverse transform

$$f(x)=\int_{-\infty}^{\infty}\widehat{f}\left(\xi
ight)\,e^{i2\pi\xi x}\,d\xi,\quadorall\,x\in\mathbb{R}.$$
 (Eq.2)



Kernel

K

- Loss functions
- Transwarp Contrastive Learning

#### Content

- => Positive pair (time domain features from same patients)
- => Negative pair (time domain features from different patients)
   Style
- => Positive pair
- (Frequency domain features from different modalities)
- (Learning a unified style features across modalities)



$$\mathcal{L}_{fully} = \frac{1}{N_s} \sum_{i=1}^{N_s} \left( 1 - \frac{2|p_i^s \cap y_i^s|}{|p_i^s| + |y_i^s|} - y_i^s \log(p_i^s) \right)$$
(2)

$$\mathcal{L}_{semi} = \frac{1}{N_s} \sum_{i=1}^{N_s} (p_i^s - p_i^{s \to t})^2 + \frac{1}{N_t} \sum_{i=1}^{N_t} (p_i^{t \to s} - p_i^t)^2$$
(3)

$$h(u,v) = \frac{u^T v}{\|u\|_2 \|v\|_2} \tag{4}$$

$$pos_i^c = h\left(z_i^s, z_i^{s \to t}\right) + h\left(z_i^{t \to s}, z_i^t\right) \tag{5}$$

$$neg_i^c = h\left(z_i^s, z_i^{t \to s}\right) + h\left(z_i^{s \to t}, z_i^t\right) \tag{6}$$

$$pos_{i}^{s} = h\left(s_{i}^{s}, s_{i}^{t \to s}\right) + h\left(s_{i}^{s}, s_{i}^{t}\right) + h\left(s_{i}^{s \to t}, s_{i}^{t}\right) + h\left(s_{i}^{s \to t}, s_{i}^{t \to s}\right)$$
(7)

$$\mathcal{L}_{transwarp} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{(e^{pos_i^c} + e^{pos_i^s})/\tau}{e^{pos_i^c} + e^{pos_i^s} + e^{neg_i^c}}$$
(8)

$$\mathcal{L} = \lambda_1 \cdot \mathcal{L}_{fully} + \lambda_2 \cdot \mathcal{L}_{semi} + \lambda_3 \cdot \mathcal{L}_{transwarp}$$
 (9)

### Results



**Table 1**. Comparison of Segmentation Performance with UDA SOTAs and different training strategy.\* indicates p < 0.05 in t-test.

| Methods                           | DSC (%) ↑        | Sen (%) ↑        | Jac (%) ↑        | VS (%) ↑         |
|-----------------------------------|------------------|------------------|------------------|------------------|
| $\mathcal{S} 	o \mathcal{T}$ [2]  | $31.48 \pm 6.76$ | $18.89 \pm 5.00$ | $18.88 \pm 5.00$ | $31.52 \pm 6.75$ |
| MSCDA [12]                        | $41.18 \pm 4.70$ | $27.57 \pm 4.96$ | $26.04 \pm 3.84$ | 49.12 ± 8.69     |
| DAFormer [9]                      | $57.75 \pm 6.35$ | $42.84 \pm 8.07$ | $40.89 \pm 6.52$ | $63.37 \pm 9.70$ |
| MIC [11]                          | $67.16 \pm 2.02$ | $59.07 \pm 7.16$ | $50.59 \pm 2.27$ | $84.18 \pm 9.49$ |
| HRDA [10]                         | $68.35 \pm 2.74$ | $60.03 \pm 8.57$ | $51.98 \pm 3.14$ | $83.31 \pm 9.68$ |
| Ours                              | 72.65 ± 6.65 *   | 64.75 ± 8.06 *   | 57.46 ± 7.80 *   | 85.47 ± 9.65 *   |
| $\mathcal{T} 	o \mathcal{T}$ [16] | 79.76 ± 1.92     | 74.61 ± 7.77     | $66.37 \pm 2.69$ | $90.06 \pm 5.74$ |

**Table 2**. Ablation Study: Gradual Addition of Components from Top to Bottom.

| Components                       | DSC (%) ↑        | Sen (%) ↑        | Jac (%) ↑        | VS (%) ↑         |
|----------------------------------|------------------|------------------|------------------|------------------|
| $\overline{\mathcal{L}_{fully}}$ | $61.84 \pm 7.08$ | $46.29 \pm 8.48$ | 45.16 ± 7.77     | $64.88 \pm 8.47$ |
| $\mathcal{L}_{semi}$             | $64.60 \pm 7.36$ | $49.08 \pm 8.75$ | $48.00 \pm 8.17$ | $67.48 \pm 8.42$ |
| $\mathcal{L}_{transwarp}$        | $67.55 \pm 6.81$ | $52.75 \pm 8.65$ | $50.95 \pm 7.67$ | $72.16 \pm 8.47$ |
| Ours HSDA                        | $72.65 \pm 6.65$ | $64.75 \pm 8.06$ | $57.46 \pm 7.80$ | $85.47 \pm 9.65$ |

## Future works

• Fully-supervised Learning => Train with  $x_{3DRA}$ ,  $y_{3DRA}$ ; Test with  $x_{3DRA}$ 

• Semi-supervised Learning => Train with  $x_{3DRA}$ ,  $y_{3DRA}^{partial}$  ; Test with  $x_{3DRA}$ 

• Domain Adaptation => Train with  $x_{3DRA}$ ,  $y_{3DRA}$ ,  $x_{MRA}$ ; Test with  $x_{MRA}$ 

• Domain Generalization => Train with  $x_{3DRA}$ ,  $y_{3DRA}$  ; Test with  $x_{MRA}$ 

Domain Incremental Learning

|                | Fully-supervised Learning                    | Semi-supervised Learning                           | Domain Adaptation                         | Domain Generalization                        | Domain Incremental Learning                  |
|----------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|
| Train<br>Input | 3DRA Image Full Label  3DRA Image Full Label | 3DRA Image Partial Label  3DRA Image Partial Label | 3DRA Image Full Label  MRA Image No Label | 3DRA Image Full Label  Unseen Image No Label | 3DRA Image Full Label  Unseen Image No Label |
| Test<br>Input  |                                              |                                                    |                                           |                                              |                                              |

## Thank You









Fengming Lin



VASeg



Domain

