Unsupervised Domain Adaptation for Brain Vessel Segmentation through Transwarp Contrastive Learning Fengming Lin*, Yan Xia*, Michael MacRaild, Yash Deo, Haoran Dou, Qiongyao Liu, Kun Wu, Nishant Ravikumar**, Alejandro F Frangi** ## **Fengming Lin** PhD student, School of Computing, University of Leeds, UK Yan Xia: co-first author Nishant Ravikumar: co-last author Alejandro F Frangi: last author alejandro.frangi@manchester.ac.uk, sdulinfm@gmail.com - Motivations of vessel segmentation - Accurate diagnosis and surgery planning - Design medical devices for different patients - Modalities of cerebral vessel analysis - 3DRA, MRA, DSA, CTA ... - Challenges - Cross modality: domain shift between 3DRA and MRA ■ To deal with domain shift: unsupervised domain adaptation • Fully-supervised Learning => Train with x_{3DRA} , y_{3DRA} ; Test with x_{3DRA} • Semi-supervised Learning => Train with x_{3DRA} , $y_{3DRA}^{partial}$; Test with x_{3DRA} • Un-supervised Domain Adaptation => Train with x_{3DRA} , y_{3DRA} , x_{MRA} ; Test with x_{MRA} | | Fully-supervised Learning | | Semi-supervised Learning | | Domain Adaptation | | |----------------|---------------------------|------------|--------------------------|---------------|-----------------------|----------------------| | Train
Input | 3DRA Image | Full Label | 3DRA Image | Partial Label | 3DRA Image MRA Image | Full Label No Label | | Test
Input | | | | | | | ## Methods - Pre-processing: Homocentric Squares Domain Adaptation (image style transfer) - Network structure: teacher-student - Loss function: fully-supervised loss + semi-supervised loss + transwarp contrastive loss - Homocentric Squares Gaussian Kernel: Fourier Transform for style transfer - Low frequency: style information. - High frequency: content information. - Change square kernel into homocentric square kernel decaying in Gaussian distribution. Fourier transform $$\widehat{f}\left(\xi ight) =\int_{-\infty}^{\infty}f(x)\;e^{-i2\pi\xi x}\;dx.$$ (Eq.1) Inverse transform $$f(x)=\int_{-\infty}^{\infty}\widehat{f}\left(\xi ight)\,e^{i2\pi\xi x}\,d\xi,\quad orall\,x\in\mathbb{R}.$$ (Eq.2) Kernel K - Loss functions - Transwarp Contrastive Learning #### Content - => Positive pair (time domain features from same patients) - => Negative pair (time domain features from different patients) Style - => Positive pair - (Frequency domain features from different modalities) - (Learning a unified style features across modalities) $$\mathcal{L}_{fully} = \frac{1}{N_s} \sum_{i=1}^{N_s} \left(1 - \frac{2|p_i^s \cap y_i^s|}{|p_i^s| + |y_i^s|} - y_i^s \log(p_i^s) \right)$$ (2) $$\mathcal{L}_{semi} = \frac{1}{N_s} \sum_{i=1}^{N_s} (p_i^s - p_i^{s \to t})^2 + \frac{1}{N_t} \sum_{i=1}^{N_t} (p_i^{t \to s} - p_i^t)^2$$ (3) $$h(u,v) = \frac{u^T v}{\|u\|_2 \|v\|_2} \tag{4}$$ $$pos_i^c = h\left(z_i^s, z_i^{s \to t}\right) + h\left(z_i^{t \to s}, z_i^t\right) \tag{5}$$ $$neg_i^c = h\left(z_i^s, z_i^{t \to s}\right) + h\left(z_i^{s \to t}, z_i^t\right) \tag{6}$$ $$pos_{i}^{s} = h\left(s_{i}^{s}, s_{i}^{t \to s}\right) + h\left(s_{i}^{s}, s_{i}^{t}\right) + h\left(s_{i}^{s \to t}, s_{i}^{t}\right) + h\left(s_{i}^{s \to t}, s_{i}^{t \to s}\right)$$ (7) $$\mathcal{L}_{transwarp} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{(e^{pos_i^c} + e^{pos_i^s})/\tau}{e^{pos_i^c} + e^{pos_i^s} + e^{neg_i^c}}$$ (8) $$\mathcal{L} = \lambda_1 \cdot \mathcal{L}_{fully} + \lambda_2 \cdot \mathcal{L}_{semi} + \lambda_3 \cdot \mathcal{L}_{transwarp}$$ (9) ### Results **Table 1**. Comparison of Segmentation Performance with UDA SOTAs and different training strategy.* indicates p < 0.05 in t-test. | Methods | DSC (%) ↑ | Sen (%) ↑ | Jac (%) ↑ | VS (%) ↑ | |-----------------------------------|------------------|------------------|------------------|------------------| | $\mathcal{S} o \mathcal{T}$ [2] | 31.48 ± 6.76 | 18.89 ± 5.00 | 18.88 ± 5.00 | 31.52 ± 6.75 | | MSCDA [12] | 41.18 ± 4.70 | 27.57 ± 4.96 | 26.04 ± 3.84 | 49.12 ± 8.69 | | DAFormer [9] | 57.75 ± 6.35 | 42.84 ± 8.07 | 40.89 ± 6.52 | 63.37 ± 9.70 | | MIC [11] | 67.16 ± 2.02 | 59.07 ± 7.16 | 50.59 ± 2.27 | 84.18 ± 9.49 | | HRDA [10] | 68.35 ± 2.74 | 60.03 ± 8.57 | 51.98 ± 3.14 | 83.31 ± 9.68 | | Ours | 72.65 ± 6.65 * | 64.75 ± 8.06 * | 57.46 ± 7.80 * | 85.47 ± 9.65 * | | $\mathcal{T} o \mathcal{T}$ [16] | 79.76 ± 1.92 | 74.61 ± 7.77 | 66.37 ± 2.69 | 90.06 ± 5.74 | **Table 2**. Ablation Study: Gradual Addition of Components from Top to Bottom. | Components | DSC (%) ↑ | Sen (%) ↑ | Jac (%) ↑ | VS (%) ↑ | |----------------------------------|------------------|------------------|------------------|------------------| | $\overline{\mathcal{L}_{fully}}$ | 61.84 ± 7.08 | 46.29 ± 8.48 | 45.16 ± 7.77 | 64.88 ± 8.47 | | \mathcal{L}_{semi} | 64.60 ± 7.36 | 49.08 ± 8.75 | 48.00 ± 8.17 | 67.48 ± 8.42 | | $\mathcal{L}_{transwarp}$ | 67.55 ± 6.81 | 52.75 ± 8.65 | 50.95 ± 7.67 | 72.16 ± 8.47 | | Ours HSDA | 72.65 ± 6.65 | 64.75 ± 8.06 | 57.46 ± 7.80 | 85.47 ± 9.65 | ## Future works • Fully-supervised Learning => Train with x_{3DRA} , y_{3DRA} ; Test with x_{3DRA} • Semi-supervised Learning => Train with x_{3DRA} , $y_{3DRA}^{partial}$; Test with x_{3DRA} • Domain Adaptation => Train with x_{3DRA} , y_{3DRA} , x_{MRA} ; Test with x_{MRA} • Domain Generalization => Train with x_{3DRA} , y_{3DRA} ; Test with x_{MRA} Domain Incremental Learning | | Fully-supervised Learning | Semi-supervised Learning | Domain Adaptation | Domain Generalization | Domain Incremental Learning | |----------------|--|--|---|--|--| | Train
Input | 3DRA Image Full Label 3DRA Image Full Label | 3DRA Image Partial Label 3DRA Image Partial Label | 3DRA Image Full Label MRA Image No Label | 3DRA Image Full Label Unseen Image No Label | 3DRA Image Full Label Unseen Image No Label | | Test
Input | | | | | | ## Thank You Fengming Lin VASeg Domain