publications

Publications by categories in reversed chronological order.

journals
conferences
preprints
patents
challenges
.txt
.bib

2025

  1. lin2025pixels.png
    Lin, F. , Zakeri, Arezoo, Xue, Yidan, MacRaild, Michael, Dou, Haoran, and 5 more authors. (2025). From Pixels to Polygons: A Survey of Deep Learning Approaches for Medical Image-to-Mesh Reconstruction. arXiv preprint arXiv:2505.03599.
  2. liu2025key.png
    Liu, Qiongyao, Lassila, Toni, Lin, F. , MacRaild, Michael, Patankar, Tufail, and 6 more authors. (2025). Key influencers in an aneurysmal thrombosis model: A sensitivity analysis and validation study. APL Bioengineering, 9(1).

2024

  1. lin2024unsupervised.png
    Lin, F. , Xia, Yan, Deo, Yash, MacRaild, Michael, Dou, Haoran, and 4 more authors. (2024). Unsupervised Domain Adaptation for Brain Vessel Segmentation Through Transwarp Contrastive Learning. 2024 IEEE International Symposium on Biomedical Imaging (ISBI).
  2. lin2024gs.png
    Lin, F. , Xia, Yan, MacRaild, Michael, Deo, Yash, Dou, Haoran, and 4 more authors. (2024). GS-EMA: Integrating Gradient Surgery Exponential Moving Average with Boundary-Aware Contrastive Learning for Enhanced Domain Generalization in Aneurysm Segmentation. 2024 IEEE International Symposium on Biomedical Imaging (ISBI).
  3. deo2024few.png
    Deo, Yash, Lin, F. , Dou, Haoran, Cheng, Nina, Ravikumar, Nishant, and 2 more authors. (2024). Few-shot learning in diffusion models for generating cerebral aneurysm geometries. 2024 IEEE International Symposium on Biomedical Imaging (ISBI).
  4. cheng2024synthesising.png
    Cheng, Nina, Liu, Zhengji, Deo, Yash, Dou, Haoran, Bi, Ning, and 5 more authors. (2024). Synthesising 3D cardiac CINE-MR images and corresponding segmentation masks using a latent diffusion model. 2024 IEEE International Symposium on Biomedical Imaging (ISBI).
  5. chatterjee2024smile.png
    Chatterjee, Soumick, Mattern, Hendrik, Dorner, Marc, Sciarra, Alessandro, Dubost, Florian, and 8 more authors. (2024). SMILE UHURA Challenge Small Vessel Segmentation at Mesoscopic Scale from Ultra High Resolution 7T Magnetic Resonance Angiograms. arXiv preprint arXiv:2411.09593.

2023

  1. lin2023high.png
    Lin, F. , Xia, Yan, Song, Shuang, Ravikumar, Nishant, and Frangi, Alejandro F (2023). High-throughput 3DRA segmentation of brain vasculature and aneurysms using deep learning. Computer Methods and Programs in Biomedicine, 230:107355.
  2. lin2023adaptive.png
    Lin, F. , Xia, Yan, Ravikumar, Nishant, Liu, Qiongyao, MacRaild, Michael, and 1 more author. (2023). Adaptive semi-supervised segmentation of brain vessels with ambiguous labels. International Conference on Medical Image Computing and Computer-Assisted Intervention:106–116.
  3. liu2023hemodynamics.png
    Liu, Qiongyao, Sarrami-Foroushani, Ali, Wang, Yongxing, MacRaild, Michael, Kelly, Christopher, and 6 more authors. (2023). Hemodynamics of thrombus formation in intracranial aneurysms: An in silico observational study. APL bioengineering, 7(3).

2021

  1. lin2021path.png
    Lin, F. , Wu, Qiang, Liu, Ju, Wang, Dawei, and Kong, Xiangmao (2021). Path aggregation U-Net model for brain tumor segmentation. Multimedia Tools and Applications, 80(15):22951–22964.

2019

  1. lin2019fmnet.png
    Lin, F. , Liu, Ju, Wu, Qiang, Kong, Xiangmao, Khan, Waliullah, and 2 more authors. (2019). FMNet: feature mining networks for brain tumor segmentation. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI):555–560.
  2. shi2019brain.png
    Shi, Wei, Pang, Enshuai, Wu, Qiang, and Lin, F. . (2019). Brain tumor segmentation using dense channels 2D U-Net and multiple feature extraction network. International MICCAI brainlesion workshop:273–283.

2018

  1. kong2018hybrid.png
    Kong, Xiangmao, Sun, Guoxia, Wu, Qiang, Liu, Ju, and Lin, F. . (2018). Hybrid pyramid u-net model for brain tumor segmentation. International conference on intelligent information processing:346–355.
  2. bakas2018identifying.png
    Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, and 8 more authors. (2018). Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629.
  3. xu2018brain.png
    Xu, X, Kong, X, Sun, G, Lin, F, Cui, X, and 3 more authors. (2018). Brain tumor segmentation and survival prediction based on extended U-Net model and XGBoost. Proc 7th MICCAI BraTS Challenge, Granada, Spain:525–533.